Waar is alle materie uit opgebouwd, en welke wetten volgen die deeltjes om alles op aarde en de rest van het heelal vorm te geven? Wat is antimaterie, en wat heeft quantumtheorie daarmee te maken? In Reis naar de kern neemt Ivo van Vulpen, deeltjesonderzoeker bij CERN in Genève en verbonden aan de Universiteit van Amsterdam, je mee langs al deze grote vragen. Je denkt misschien dat dat ver van je normale belevingswereld afstaat, maar al deze inzichten worden dagelijks gebruikt. Van de GPS op je telefoon, tot de scanners in ziekenhuizen.. Over Reis naar de Kern Na Terug naar de Oerknal met Govert Schilling en Baan door het Brein met Iris Sommer is het nu tijd voor een nieuw avontuur: Reis naar de kern. Een fascinerende duik in de wereld van de allerkleinste deeltjes, waar de allergrootste vragen worden beantwoord. In vijf afleveringen zoomen we in op de wereld van het atoom, de quantummechanica, antimaterie en de ontdekking van het Higgs Boson. Reis naar de Kern is een podcast van BNR. Tekst en presentatie: Ivo van Vulpen. Concept: Connor Clerx. Eindredactie: Annick van der Leeuw. Montage: Gijs Friesen en Connor Clerx. Sounddesign en mixage: Gijs Friesen. Over Ivo Ivo van Vulpen is als deeltjesfysicus werkzaam aan de Universiteit van Amsterdam, het Nationaal Instituut voor subatomaire fysica (Nikhef) en hij doet onderzoek bij de deeltjesversneller (Large Hadron Collider) bij CERN in Genève. Hij is hoogleraar Wetenschapscommunicatie, in het bijzonder betreffende de natuurkunde, aan de Universiteit Leiden. In 2018 verscheen zijn eerste boek: De melodie van de natuur. Transcript aflevering Tot de jaren dertig was eigenlijk niks aan de hand. De natuurkunde was vrij overzichtelijk. Weer overzichtelijk moet ik natuurlijk zeggen. In de vorige aflevering hadden we het over de atoomrevolutie in die eerste decennia van de 20e eeuw waarin het ons eindelijk lukte om door te dringen tot de wereld van het atoom zelf, die kleinste bouwstenen van alle elementen. Tot de verbazing van wetenschappers bleken alle atomen uit dezelfde drie basisbouwstenen opgebouwd te zijn: protonen en neutronen (die samen de atoomkernen vormden) en de elektronen. Van negentig elementen terug naar drie bouwstenen dus. Heerlijk simpel en overzichtelijk! Alles op orde dus zou je denken. Maar toen gebeurde er iets waardoor we in één klap wisten dat we nog niet op de diepste laag van de kennis waren aangekomen en dat nog een onbekende wereld verborgen lag. In deze aflevering vertel ik jullie over deze verrassing en hoe het ons door ontwikkelingen in de techniek uiteindelijk wél lukte om het fundament van de natuur te bereiken. De neutronen en protonen bleken toen opgebouwd te zijn uit nog kleinere deeltjes, we leerden zelf deeltjes te maken in het laboratorium met behulp van deeltjesversnellers en ze te bestuderen met detectoren. Alles samen noemen we dat het Standaard Model en dat is tot op de dag van vandaag het beste beeld dat we hebben van de wereld op de allerkleinste schaal. En daar zitten gekke dingen bij hoor: deeltjes die dwars door de aarde kunnen vliegen bijvoorbeeld en magische dingen als anti-materie. Om deze stappen te begrijpen is het handig om je voor te stellen dat de ontdekking van het atoom net zoiets is aanspoelen op een onbekend eiland, waarna je, uit nieuwsgierigheid, gaat proberen dat eiland verder in kaart te brengen. Op het eiland bevindt zich een dicht oerwoud en terwijl je er steeds dieper en dieper in probeert door te dringen, bijvoorbeeld langs een rivier weet je niet of dat bos zich nog tientallen kilometers zo uit zal strekken en of er überhaupt nog wel iets anders te vinden zal zijn dan dezelfde bomen, vruchten en dieren die je van thuis kent. Maar als er dan ineens een bootje de rivier af komt zakken of als je een dier ziet dat je nooit eerder hebt gezien dan weet je gelijk dat je niet alleen bent en dat er meer dingen verborgen zijn. Precies zo'n situatie hadden we in de deeltjesfysica. Tijdens het onderzoek naar atoomkernen en radioactiviteit bleek gek genoeg dat er ook een bron van straling aanwezig was in een ruimte als er helemaal geen radioactieve stoffen in de buurt waren. Het idee was dat dat veroorzaakt werd door radioactieve stoffen in de aarde zelf. Best logisch en dus ‘case closed’ zou je denken, maar dan heb je net even buiten de koppigheid van de natuurkundigen gerekend. Er is er namelijk altijd eentje die het zeker wil weten en die naar de top van de Eiffeltoren gaat om te kijken of daar inderdaad minder straling is of in een luchtballon stapt om nog hoger te meten. Dat is allebei echt gebeurd! En maar goed ook, want het bleek dat de straling helemaal niet afnam hoe hoger je kwam. het werd juist sterker. De straling kwam dus niet uit de aarde, maar uit de ruimte! Blijkbaar worden we op aarde blijkbaar dus gebombardeerd door deeltjes uit het universum. Die botsen hoog in de lucht op zuurstofatomen en produceren daar een soort lawine van deeltjes waarvan sommigen lang genoeg leven om het aardoppervlak te halen. Die deeltjes waren dus de bron van die mysterieuze straling waar we naar op zoek waren. Dat onderzoek naar deze zogenaamde kosmische stralen is nog steeds een belangrijk onderzoeksgebied, maar daar gaat het nu even niet om. Mensen onderzochten om welke deeltjes het nou precies ging door de sporen van de deeltjes zichtbaar te maken, net zoals de sporen die vliegtuigen hoog in de lucht produceren, en door te kijken hoe ze reageerden als ze op andere materialen botsten. Zoveel mogelijkheden waren er niet, want we kenden immers maar drie verschillende deeltjes. Tot hun verbazing zagen ze dat het deeltjes waren die wel elektrisch geladen waren, maar geen proton waren …. en ook geen elektron. Een nieuw deeltje dus dat ongeveer tweehonderd keer zo zwaar bleek te zijn als een elektron. Het kreeg een eigen naam: het muon. Een onverwachte gast. Niet echt nodig, maar dat maakt niet uit. Het is net als gekleurde hagelslag en dure sportwagens. Niet echt nodig, maar het maakt de wereld wel een stuk leuker. Als kosmische stralen op dunne materialen vallen, blijken er nog veel meer nieuwe deeltjes te ontstaan. Sterker nog, een hele dierentuin vol nieuwe deeltjes. Fascinerend, maar het onderzoek was erg onhandig, want je was volledig overgeleverd aan wat de ruimte je gaf. Gelukkig lukte het ons dankzij twee technieken om zelf de regie in handen te krijgen: 1) de deeltjesversneller (om zelf deeltjes te kunnen maken in deeltjesbotsingen) en 2) de deeltjesdetector om alle deeltjes zichtbaar te maken die in die botsingen werden gemaakt. Dit zijn de twee elementen die we tot op de dag van vandaag nog steeds gebruiken om de natuur op de kleinste schaal te bestuderen. Alleen steeds een stukje geavanceerder. Eerst de deeltjesversneller. Dat we zelf deeltjes kunnen maken is een cruciale ontdekking geweest. De bekende formule van Albert Einstein E=mc2 betekent namelijk niet alleen dat je massa kan omzetten in energie (dat was de basis van de kernenergie en het branden van de zon uit de vorige aflevering), maar het werkt ook de andere kant op; als je maar genoeg energie bij elkaar brengt kan je daarmee ook zelf massa creëren: nieuwe deeltjes dus. In een deeltjesversneller geven we deeltjes, bijvoorbeeld protonen, energie door ze een klein zetje te geven. Daarna gebruiken we magneten om ze af te buigen en ze door een holle buis in een heel grote cirkel weer terug te leiden naar de plek waar we ze een zetje gaven … om ze vervolgens opnieuw een duwtje te geven. Als je dat heel vaak herhaalt krijgen deeltjes een enorm hoge snelheid en energie en als je ze daarna op elkaar laat botsen kun je al die bewegingsenergie gebruiken om nieuwe deeltjes te maken. Het voordeel is dat we zo deeltjes in een gecontroleerde omgeving kunnen maken. De ontwikkeling van de deeltjesversnellers ging heel snel: steeds meer energie en steeds meer botsingen. Op dit moment is de krachtigste deeltjesversneller op aarde de Large Hadron Collider op CERN, het Europees centrum voor de deeltjesfysica. Dan de deeltjesdetector. Om te begrijpen wat er in een botsing gebeurt is het cruciaal dat je de botsing kunt ‘fotograferen’. Dat is niet zo makkelijk, want ik zeg wel fotograferen, omdat we dat allemaal kennen uit onze eigen belevingswereld, maar een normale fotocamera kan alleen maar licht zien en helemaal geen andere deeltjes. De meeste deeltjes in de botsing leven trouwens ook veel te kort om te zien. We hebben een manier bedacht die je kunt vergelijken met die van het bestuderen van voetstappen in de sneeuw. Als ik je een foto laat zien van een spoor van voetstappen in de sneeuw dan vind je het vast gek als ik je vraag of het een auto, een konijn of een mens is geweest die deze sporen heeft achtergelaten. ‘Een mens natuurlijk’ zeg je dan. En als je de foto in meer detail bekijkt kun je vast nog veel meer achterhalen. Je ziet bijvoorbeeld of het één persoon was of twee, of het een kind was of een volwassene en nog veel meer. In een deeltjesdetector doen we eigenlijk precies hetzelfde. Als een deeltje door een detector heen beweegt laat het daar ook een karakteristieke afdruk achter, net als die voetstappen in de sneeuw. Het gaat hier te ver om de details te bespreken, maar door deeltjes door verschillende detectielagen te laten bewegen, die elk een specifieke eigenschap vastleggen, kun je van alle deeltjes hun type, richting en energie vastleggen. En hoewel het strikt genomen niet klopt is het prima om er over na te denken als een ‘foto’ van de botsing. Dat doe ik zelf ook. Maar het is wel echt ingewikkeld. Er zijn een miljard botsingen per seconde en in elke botsing zijn vaak wel honderd(en) deeltjes. Ontzettend moeilijk dus, … maar niet onmogelijk als je samenwerkt met slimme en creatieve mensen van over de hele wereld. Veel van de nieuwe deeltjes die gemaakt worden in de botsing leven veel en veel te kort om onze detector te bereiken. Het einde van het leven klinkt dramatischer dan het is, maar deeltjes kunnen uit elkaar vallen in een mix van andere deeltjes. Om toch iets te leren over die wereld die al lang verdwenen is, gebruiken we dezelfde truc die paleontologen gebruiken. De wereld die zij bestuderen, die van dinosauriërs, is ook al 65 miljoen jaar geleden verdwenen en toch verschijnen er wekelijks boeken over verschillende soorten dino’s en hun eigenschappen. Dat kan omdat er dingen bewaard zijn gebleven, hun botten, en door die weer in elkaar te zetten kunnen ze die wereld reconstrueren. Een super slim idee en wij deeltjesfysici doen hetzelfde. Wij gebruiken de ‘stabiele’ deeltjes (de deeltjes die lang genoeg leven om ze te zien in onze detectoren) om te herleiden wat er in de botsing gebeurd is. Hebben we nou wat aan die deeltjesversnellers en detectoren of zijn het speeltjes van jullie wetenschappers? Zeker! Er zijn zelfs duizenden deeltjesversnellers in de wereld. Bijvoorbeeld in ziekenhuizen. Helaas kent bijna iedereen wel iemand die kanker heeft en bestraald wordt, maar bijna niemand weet waarmee mensen dan eigenlijk bestraald worden. Meestal zijn röntgenstralen met heel veel energie het meest geschikt en om die te maken heb je een deeltjesversneller nodig. Net als bij de productie van ‘gewone’ röntgenstralen komt de straling vrij als deeltjes versneld worden en op een plaatje worden geschoten. Zonder deeltjesversneller geen kanker-bestraling dus, en daarom heeft elk groot ziekenhuis deeltjesversnellers. En de detectoren zelf dan? Laat ik ook daar weer een toepassing in het ziekenhuis pakken. We kennen allemaal de röntgenfoto. De straling zelf zie je niet, maar die gaat wel dwars door je spieren en vet heen, maar niet door je botten. Als je het licht opvangt aan de andere kant van je lijf kun je op de foto daarom heel goed de botten zien. En dus zien of er een breuk is. Of niet. Als je een scherpere foto wil kun je meer licht gebruiken, maar dat is niet zonder gevaar. Het is niet voor niks dat iedereen de kamer uitgaat in het ziekenhuis of bij de tandarts als er een röntgenfoto gemaakt wordt. De straling richt namelijk veel schade aan op zijn weg door je lichaam. Een andere oplossing om een betere foto te maken is door de fotografische plaat zelf beter te maken. Dit is net zoiets als het vergroten van het aantal pixels bij een digitale camera. En elke verbetering in de gevoeligheid zorgt ervoor dat met dezelfde hoeveelheid straling een betere foto gemaakt kan worden. Voor een enkele foto zal dat niet veel uitmaken, maar voor een zogenaamde ct-scan (dat is ongeveer het equivalent van tweehonderd foto’s tegelijk) betekent zou zoiets een enorme gezondheidswinst voor patiënten kunnen betekenen. Net als aan het begin van de twintigste eeuw toen men alle atomen rangschikte en in detail onderzocht om uiteindelijk te ontdekken dat ze allemaal opgebouwd waren uit dezelfde drie bouwstenen gebeurde hier eigenlijk weer hetzelfde. In deeltjesbotsingen was er een hele dierentuin aan deeltjes tevoorschijn gekomen, maar toen het stof neerdaalde bleken al die deeltjes ook weer combinaties te zijn van maar aan handvol elementaire bouwstenen. Het proton en neutron bleken bijvoorbeeld opgebouwd te zijn uit zogenaamde up-quarks en down-quarks. Samen met het elektron waren dat de bouwstenen van alle stabiele materie. Ze vormen samen de zogenaamde eerste familie, maar er hoort nog een vierde familielid bij: het neutrino. Een deeltje waar ik verder niet veel over zal zeggen, maar dat geproduceerd wordt in radioactieve processen en dat bekend staat als ‘spookdeeltje’ omdat het zonder probleem dwars door de aarde heen kan vliegen. Belangrijker is om te vertellen dat er van elk van deze vier deeltjes twee kopieën bestonden, twee kopieën met meer massa’s en die bovendien maar kort leefden. Dat gekke muon bijvoorbeeld, het zwaardere zusje van het elektron waar de hele zoektocht mee begon, heeft in tegenstelling tot het elektron niet het eeuwige leven, maar leeft maar een miljoenste seconde. Uiteindelijk bleken er 12 elementaire deeltjes te zijn, netjes gerangschikt in drie families van elk vier deeltjes. Deze deeltjes, samen met de regels over de manier waarop ze met elkaar communiceren (elkaar aantrekken, afstoten of in elkaar versmelten) vormen samen het beroemde Standaard Model. Dit Standaard Model vormt op dit moment het fundament van onze kennis over de opbouw van alle materie. Er is géén diepere laag. Dit is het. Het is een fantastisch en complex wiskundig bouwwerk waarmee we bijna alle deeltjes-fenomenen die we zien kunnen verklaren, maar tegelijkertijd zijn er ook frustrerende open vragen en mysteries. Waarom zijn er bijvoorbeeld drie families en niet gewoon één en waarom hebben de deeltjes zulke enorm verschillende massa en lukt het niet om de zwaartekracht een plekje te geven in de theorie? Dat allemaal in de volgende afleveringen. We wandelen nu in grote stappen door het bos heen recht op het doel af, maar voor we afsluiten wil ik nog even een klein zijpaadje inslaan en iets zeggen over iets is dat als totale science-fiction en magie bekend staat onder het brede publiek terwijl het voor deeltjesfysici de gewoonste zaak is van de wereld is: anti-materie. Komt ie! Toen de quantummechanica nog in de kinderschoenen stond bleek het lastig om de nieuwe theorie te combineren met de relativiteitstheorie. Enorm frustrerend, maar uiteindelijk lukte het de Engelsman Paul Dirac. Hij vond een formule die hem in staat stelde de bewegingen van het elektron in die rare quantumwereld te voorspellen. Het werkte allemaal fantastisch, maar zijn nieuwe theorie voorspelde dat er ook zoiets als een anti-elektron zou moeten bestaan (een positron voor de liefhebbers). Een deeltje dat even zwaar zou moeten zijn als een elektron, maar dan positief geladen. Hoewel er op zich niks mis is met het voorspellen van een nieuw deeltje (doe wat je niet laten kan), maar het leek naïef, omdat er geen en-kel experiment was dat zo’n anti-elektron had gezien. Gelukkig voor Dirac werd het positron vrij snel na zijn voorspelling ontdekt in het onderzoek naar kosmische stralen. En weer door Carl Anderson, de man die ook het muon deeltje had ontdekt. ‘Some guys have all the luck’. Later zou blijken dat inderdaad elk deeltje zijn eigen anti-deeltje heeft en het vormt daarmee ‘gewoon’ de helft van de bouwstenen van het Standaard Model. Rondom antimaterie hangt een zweem van mysterie. Er is op aarde namelijk alleen materie en geen antimaterie en ook in de rest van het heelal lijkt het niet voor te komen. HOE kan dat nou? Een van de bijzondere aspecten van deeltjes en antideeltjes is ook dat ze kunnen samensmelten als ze elkaar tegenkomen, maar dat geeft gelijk de vraag waarom er dan überhaupt nog materie over is in het heelal als ze bij de oerknal in even grote hoeveelheden gemaakt zijn? Het mechanisme dat deze asymmetrie veroorzaakt is nog steeds een van de grootste raadsels van de deeltjesfysica. Voor jou als luisteraar is het vast krankzinnig om te beseffen dat iets zo exotisch als anti-materie, iets waar je misschien tot 5 minuten geleden nog nooit van had gehoord, toch een toepassing heeft gevonden. Dat is zo namelijk. Het is niet in de vorm van een bom zoals in het boek het Bernini-mysterie van Dan Brown, maar juist om levens te redden in het ziekenhuis. Daar worden de twee lichtflitsen die gemaakt worden als een positron een elektron elkaar tegenkomen gebruikt om tumoren te lokaliseren. Laat me uitleggen hoe we dat doen. Bij patiënten wordt eerst een radioactieve stof geïnjecteerd die heel slim aan een (suiker)molecuul wordt gehangen zodat het zich via het bloed naar de tumor toe beweegt. Er wordt een speciaal atoom gebruikt dat positronen uitstraalt als straling, antimaterie dus. En dat positron zal, zodra het vrijkomt, vrijwel gelijk met een elektron samensmelten omdat die immers overal in het lichaam zitten. Daarbij worden dan twee lichtdeeltjes gemaakt die in tegenovergestelde richtingen dwars door het lichaam naar buiten schieten. En die kun je zien met een fotocamera. Als je dus ongeveer tegelijkertijd twee lichtdeeltjes ziet die in tegengestelde richting uit het lichaam komen, dan weet je dat er op de lijn tussen de twee camera’s een positron en een elektron zijn samengesmolten .. en dat zich op die lijn dus de tumor bevond. Als je ook nog nauwkeurig de aankomsttijd van de flitsen meet dan weet je ook waar de tumor precies zit. Omdat er bij de injectie een groot aantal radioactieve atomen wordt gebruikt en de lichtdeeltjes steeds in een willekeurige richting uitgezonden worden dan kunnen we zo een driedimensionaal beeld van de tumor maken. Antimaterie in ziekenhuizen om tumoren op te sporen; wie had dat ooit gedacht! En sterker nog, ik heb vandaag ook verteld dat als je een tumor blijkt te hebben we daarna weer een deeltjesversnellers nodig hebben om de tumoren te bestralen en te vernietigen. Deeltjesfysica redt levens! Met alle elementaire deeltjes en de krachten die vertellen hoe ze bewegen en met elkaar communiceren hebben we het fundament van de natuur gevonden: het Standaard Model. Tegelijk zijn er nog grote open vragen. Een van de grootste tekortkomingen was dat deeltjes in de theorie geen massa konden hebben. En dat is jammer, want a) deeltjes hebben wel massa en b) als deeltjes geen massa hebben zullen ze niet samenklonteren tot sterren en planeten en waren wij er dus ook nooit geweest. Een mogelijke oplossing, bedacht door een jonge Britse theoretisch natuurkundige, was de start van een zoektocht die 50 jaar zou duren. Daarover meer in de volgende aflevering. See omnystudio.com/listener for privacy information.
Gemaakt door: BNR Nieuwsradio Eerste aflevering: 17-07-2022
De podcast Terug naar de Oerknal | BNR heeft in totaal 17 afleveringen
Maker: BNR Nieuwsradio Datum: 10-07-2025
Disclaimer: De podcast (artwork) is geembed op deze pagina en is het eigendom van de eigenaar/ maker van de podcast. Deze is niet op enige wijze geaffilieeerd met Online-Radio.nl. Voor reclamering dient u zich te wenden tot de eigenaar/ maker van deze podcast.